## Subject programme

**W**SG

- 1. Subject name / subject module: Modern Power Supply Systems
- 2. Lecture language: English
- **3.** The location of the subject in study plans:
  - Area or areas of the studies: Computer Control Systems Engineering
  - Degree of the studies: 2nd degree studies
  - Field or fields (implementation of effects standard): Mechatronics
- **4.** Supervision of subject implementation:
  - The Institute / Another unit: The Institute of Informatics and Mechatronics
  - The person responsible for the subject: Grad Piotr, dr inż.
  - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method

|                                     |   |     |      |                 |       |      | Teac    | hing act | ivities w | ith the | tutor |         |      |         |      |         |      |       |
|-------------------------------------|---|-----|------|-----------------|-------|------|---------|----------|-----------|---------|-------|---------|------|---------|------|---------|------|-------|
| Form                                |   |     |      |                 |       |      |         |          |           |         |       |         |      |         |      |         |      | Total |
| of clas-<br>ses<br>Mode<br>of study | • | sow | ECTS | Laboratory work | sow   | ECTS | <br>sow | ECTS     |           | sow     | ECTS  | <br>sow | ECTS | <br>sow | ECTS | <br>sow | ECTS | ECTS  |
| Full-time<br>studies                |   |     |      | 45              | 55    | 4    |         |          |           |         |       |         |      |         |      |         |      | 4     |
| Part-time<br>studies                |   |     |      |                 |       | 4    |         |          |           |         |       |         |      |         |      |         |      | 4     |
| Credit<br>rigor                     |   |     |      | Graded assig    | gment | t    |         |          |           |         |       |         |      |         |      |         |      |       |

### 6. Student workload – ECTS credits balance

1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

| Activity<br>(please specify relevant work for the subject)                        | Hourly student work-<br>load (full-time stud-<br>ies/part-time studies) |  |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| Participation in laboratory classes                                               | 45                                                                      |  |
| Preparation to the laboratory classes                                             | 20                                                                      |  |
| Independent study of the subject                                                  | 33                                                                      |  |
| Participation in an exam / graded assignment / final grading                      | 2                                                                       |  |
| Total student workload                                                            | 100                                                                     |  |
| ECTS credits                                                                      | 4                                                                       |  |
| * Student's workload related to practical forms                                   | 100                                                                     |  |
| Student's workload in classes requiring direct participation of academic teachers | 45                                                                      |  |

7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:

None

Recommended duration of the subject is taken from the course plan.

8. Specific learning outcomes – knowledge, skills and social competence

| Specific learning outcomes for the subject |                                                                                                                                                                                                                                                                                                                                                                     |            |                 | Methods for testing of                     |  |  |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|--------------------------------------------|--|--|
| Outcome sym-<br>bol                        | Outcome description                                                                                                                                                                                                                                                                                                                                                 | Form       | Teaching method | (checking, assessing)<br>learning outcomes |  |  |
|                                            |                                                                                                                                                                                                                                                                                                                                                                     | Knowle     | edge            |                                            |  |  |
| K_W02                                      | A student possesses sufficient knowledge of<br>automation, electronics, and electrical<br>engineering, necessary to understand the<br>principles of operation of highly efficient<br>power supplies and is able to apply this<br>knowledge in practice through the use of<br>appropriate design methods and simulation<br>tools.                                    | Laboratory | Inquiry methods | Student learning activities                |  |  |
| K_W05                                      | A student knows and understands selected<br>facts and phenomena in power electronics, is<br>able to explain the complex relationships<br>between them, which constitute the<br>advanced general knowledge in the field of<br>automation, electronics, and electrical<br>engineering, sufficient to design, prototype,<br>implement a highly efficient power supply. | work       |                 |                                            |  |  |

# Subject programme

|       | A student is able to use information and   |            | Inquiry methods | Student learning activities |
|-------|--------------------------------------------|------------|-----------------|-----------------------------|
| K U02 | communication technologies (ICT) to create | Laboratory |                 |                             |
| K_002 | documentation either of a power supply     | work       |                 |                             |
|       | device or a power supply system.           |            |                 |                             |

9. Assessment rules / criteria for each form of education and individual grades

| 0% - 60%  | ndst | 81% - 90%  | db  |
|-----------|------|------------|-----|
| 61% - 70% | dst  | 91% - 93%  | db+ |
| 71% - 80% | dst+ | 94% - 100% | bdb |

| Activity         | Grades                                    | Calculation                                        | To Final |
|------------------|-------------------------------------------|----------------------------------------------------|----------|
| Laboratory tasks | Example: db; bdb;<br>bdb; db (4; 5; 5; 4) | 4 * 12.5% + 5 * 12.5% + 5<br>* 12.5% + 4 * 12.5% = | 2.25     |
|                  | bub; ub (4; 5; 5; 4)                      | 2.25                                               |          |

10. The learning contents with the form of the class activities on which they are carried out

#### (Laboratory work)

Systems: Introduction to power semiconductors: using thyristors and triacs; thyristor and triac applications; power MOSFETs; high voltage bipolar transistors; IGBTs.

Linear regulators: power dissipation in linear regulators; the low dropout regulator; packaging and thermal management; PCB layout.

Switched mode power supplies: using power semiconductors in switched mode topologies; output rectification; magnetics design; resonant power supplies.

Design examples: buck converter; boost converter; SEPIC converter; Cuk converter; Zeta converter; flyback converters; forward converters; half-bridge converter; full-bridge converter.

Energy harvesting. Rechargeable batteries in power supply systems.

11. Required teaching aids

Laboratory classes - specialist laboratory

# Subject programme



12. Literature:

a. Basic literature:

1. Scherz P., Monk S.; Practical electronics for inventors; ISBN 978-1-25-958754-2; McGraw - Hill Education 2016

2. Branko L. Dokić, Branko Blanuša; Power Electronics Converters and Regulators; Springer 2015 a. Supplementary literature:

1. Van Breussegem T., Steyaert M.; CMOS Integrated Capacitive DC-DC Converters; ISBN 978-1-4614-4280-6; Springer 2013

2. Wen-Wei Chen, Jiann-Fuh Chen; Control Techniques for Power Converters with Integrated Circuit; ISBN 978-981-10-7004-4; Springer 2018

3. Carbone P., Sayfe Kiaei, Fang Xu; Design, Modeling and Testing of Data Converters; ISBN 978-3-642-39655-7; Springer 2014

**b.** Internet sources:

1. Texas Instruments; DC/DC switching regulators – Technical documents; https://www.ti.com/power-management/non-isolated-dc-dc-switching-regulators/technicaldocuments.html

2. Philips Semiconductors; Switched Mode Power Supplies; https://eclass.duth.gr/modules/document/file.php/TMA495/PHILIPS%20APPLICATIONS/PHILIP S%20SemiCond%20HB.pdf

3. Microchip; Switch Mode Power Supply (SMPS) Topologies; http://ww1.microchip.com/downloads/en/appnotes/01114a.pdf

- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- **14.** Teachers implementing particular forms of education

| Form of education     | Name and surname    |
|-----------------------|---------------------|
| 1. Laboratory classes | Grad Piotr, dr inż. |